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Abstract—This analysis develops a Green's function for a point shear dislocation coplanar with a
penny-shaped cruck. The solution procedure consists of using anti-symmetry conditions which allow
the reduction to an asymmetric mixed boundary value problem for a half space. The mixed boundary
conditions between the sheur stresses and displacements on the surface are formulated in terms of
a single pair and two coupled pairs of dual integral equations which have known solutions. Closed
form expressions are found for the shear displacement discontinuity inside the crack as well as for
the shear stress on the cruck-dislocation plane. The dislocation interaction solution is then used to
formulate new integral equations for shear loading of multiple coplanar cracks or cracks with
nonuniform crack {ronts.

{. INTRODUCTION

Recent effort in the arca of three-dimensional fracture mechanics has been aimed at the
development of a method for the analysis of the nonuniform advancement of a crack front.
A crack front may advance in a nonuniform manner due to several factors such as the nature
of the applicd loading or interactions of the crack with regions of damage, heterogencity or
transformations. Typical examples of these cruck interactions are the formation of cleavage
fractures or microcracks in a brittle material ahcad of a growing crack, heterogencitics
placed in a matrix to improve fracture resistance and strength, or the transformation
toughening phenomenon of second phase particles in ceramic materials. One method of
analysis for these three-dimensional fructure problems is the formulation of hyper-singular
integral equations, by distributing dislocations over the entire cracked domain, which can
be solved numerically [see, for example, Murakami and Nemat-Nasser (1982, 1983), Lec
et al. (1987) and Hanson er al. (1989)]. A straightforward numerical solution of boundary
integral equations over the cruck domain requires discretizing the crack into elements over
which the crack opening displacement is given appropriate representations. However, when
the cracked domain is large and there arc high amplitude variations in the crack front
curvature, a large number of elements are often needed to obtain results of acceptable
accuracy. This necessitates the need for large computer storage and computational time. A
first order perturbation method, which overcomes this difficulty, hus been developed by
several investigators to analyse nonuniform crack fronts.

Apparently the first such formulation was given by Panasyuk (1962) {see Appendix B
of Gao and Rice (1987a)] who developed a first order perturbation solution for the special
case of a planar tensile crack of ncar circular geometry. A general first order theory was
constructed by Rice (1985a) for the variation in the clastic field in a cracked body caused
by perturbation in the cruck front position. His analysis considered mode I loading of a
half plane crack, Guo and Rice (1986) extended this work to the shear mode case. The first
order analysis was applicd to the planar circular internal crack under mode [ loading by
Gao and Rice (1987a) and Gao and Rice {1987b) considered the external circular crack.
The nearly circular internal crack under shear loading was analysed by Gao (1988). The
first order theory developed relies on the knowledge of the weight function (Bueckner, 1970,
1973, Rice, 1972) which gives the stress intensity factor distribution around a crack front
caused by an arbitrarily located point body force. Certain crack face weight functions {a
hmiting case for a generally located point force) have been known for some time, however
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the general weight functions for the half plane and circular cracks have only been recently
determined (Rice. 1983a; Bueckner. 1987 ; Gao. 1989a).

Although a first order theory avoids the heavy numerical computations. it is quan-
titatively limited. To overcome this difficulty. Rice (1987) has proposed two alternative
procedures. One method is a series of integrations of the first order theory. This amounts
to numerically determining a new weight function for the perturbed crack geometry and
sequentially applying the first order theory. This method was recently used by Bower and
Ortiz (1990). Secondly. he proposed the solution of integral equations over a reduced crack
domain by distributing dislocations between the wavy crack boundary and that of the
reference (half plane or circular) crack. This solution procedure was recently used suc-
cessfully by Fares (1989) in analysing a half plane crack with a wavy crack front and crack
trapping by arrays of obstacles.

This second procedure requires the determination of the interaction between the
reference crack and a point dislocation. As demonstrated by Rice (1985a). the weight
function provides information not only on the stress intensity factor for a point body force
and on the stress intensity factor around a perturbed crack front, but it can aiso be used to
determine the interactions between sources of internal stress (such as dislocations) and
crack tips. His analysis showed that these interactions could be given as double integrals
of products of weight functions over the entire crack history. This property was used by
Rice (1985b) to analyse the interactions between a half plane crack and transformation
strains or dislocations. The double integral was evaluated tn closed form to give the stress
ficld ahcad of a half plane crack when a mode 1 point distocation was on the crack plane
ahead of the crack. This 1s the point dislocation Green's function used in the numerical
analysis by Fares (1989). Anderson and Rice (1987) also utilized this solution to give a
detailed consideration of the stress field and self energy of semicircular and rectangular
coplanar dislocation loops emanating from a half plane crack under mode I loading. The
shear mode case for the half plane was studied by Gao (1989b) and Gao and Rice (1989).
The closed form shear stress ahead of a half plane crack caused by a sheur mode dislocation
coplanar with the crack was given by Gao and Rice (1989). Karthaloo and Huang (1989)
have also used this method to study the interactions between a half plane crack and regions
of shear transformation strains,

The double integrals of products of weight functions over the crack history, required
to determine the interactions, are formidable and have only been evaluated in closed form
for the two special cases of the half plane crack noted above. Recently, in applying the
distributed dislocation idea of Rice (1985b, 1987) to the large amplitude variation of a finite
size cruck front, Hanson (1990, 1991) determined in closed form the interaction between a
point prismatic dislocation coplanar with a circular internal or external crack for a trans-
versely isotropic material. The solution was found by using well known methods from
potential theory rather than considering double integrals of Bueckner’s (1987) and Gao's
(1989a) weight functions for the circular crack. The dislocation interaction solution was
used to derive Fabrikant’s (1987a) nonsingular integral equations for multiple coplanar
circular cracks as well as to derive new singular integral equations over a reduced crack
domain for use in analysing multiple coplanar cracks and planar cracks with large amplitude
variations in the crack front curvature.

[n the present analysis, the solution of Hanson (1990) is extended to the shear mode
case. Again, methods from potential theory are utilized and an extension is made to the
method developed by Westman (1965) to formulate the problem in terms of a single pair
and coupled pairs of dual integral equations which have known solutions. Having the
solution to the integral equations, the shear displacement discontinuities inside the crack
and the shear stress on the crack dislocation plane are found in closed form. Although the
coplanar shear dislocation is certainly not the most interesting case from the standpoint of
crack tip dislocation emission as studied by Gao and Rice (1989), the solution obtained is
valuable in considering multiple coplanar cracks or planar cracks with large variations in
the crack front curvature subjected to shear loading. New singular integral equations over
a reduced crack domain are obtained which can be used to accurately analyse a finite size
planar crack with a wavy crack front or multiple coplanar cracks subjected to shear loading.



Infinitesimal glide dislocation loop coplanar with penny-shaped crack 2671
2. FORMULATION

The full space dislocation interaction problem studied in this analysis is reduced by
anti-symmetry conditions to a mixed boundary value problem for a half space. A convenient
starting point for determining a solution is the potential function representation for dis-
placements and stresses in a half space = > 0 given by Muki (1960). The cylindrical coor-
dinates (r, 8. >) are used and the displacements «, ¢ and w are in the r, § and - directions,
respectively. In the sequel u is the shear modulus and v is Poisson’s ratio. The displacements
and stresses are given in terms of a biharmonic function © and a harmonic function . The
interested reader is referred to Muki (1960) for the explicit relations.

For the cylindrical geometry considered here. appropriate representations for the
functions @ and  in the half space - > 0 are given as

T

V0.2 =Y f ED3(E) e J,(r) dé cos (nf)

0

+ij ED3 (A e J(ErydEsin(nf)), (1)
1 J0

O(r.0,2) = Z f S[ES() +2F5 ()] e+ J,(¢r) d§ cos (nD)
0 Jo

+ZJ SIEVQ) +2F (D] e ¥ Ju($r) dE sin (n0).  (2)
T Je

The quantitics which will be of interest arc on the surface = = 0 of the half space and
consist of the shear displacements u(r, 0,0) and ¢(r, 0,0) as well as the stresses o.(r, 0,0),
7.,(r.0,0) and 1,.(r, 8, 0). Considering the normal stress lrst, it is easy to show that

rs

7.:(r.0,0) = 21}, J $M( =20 F(§) + S ELENu(Er) dE cos (nb)

[}

+2uy, f U =2FUAO +EEUDNL () dE sin(nd).  (3)
T Jo
In the following analysis, a solution with vanishing normal stress on the surface is required.
This condition is satisfied by the relations
(1 =29F(8) = —SE£5(Q), (1=2)FL(S) = —SEL(Q). 4)

In order to match boundary conditions on the surface, the shear stresses and dis-
placements are separated as follows. Taking the cosine expansion of ® and the sine expan-
sion of ¥ and using eqn (4) results in

ra

u(r.0.0) = 2(1 —v)f ézﬂ}(s‘)ll(ir)df—z J (1 =wFi) = D)
} ] 0
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£

v(r.0.0) = ) L Gl =v)FE) = DA, (&) d¢ sin (n0)

+‘4L Sl =MFAE) + Du(Oas i (Er) dE sin (nf),  (6)
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Taking the sine expansion of ® and the cosine expansion of i and using eqn (4) gives

u(r.0.0) = *Z J ((F =) F A + DD, - (Er) dE sin (nh)

+z J (T =) F(E) ~ DD, (S dE sin(nl)y,  (9)

l'(rJ),()):ZJ EDNO (ErydE - ZJ S =FUE) + D)

xJ, ((GrydE cos (n0) =Y J SO =G = DO, (Er) dE cos (nl),  (10)

i )

T, (r.0.0) =u{ZJ S'UPAD + DO, (Er) d sin (n)
p Ju

£

—Zj 5‘[/'7.(5‘)—1)7;(5)11,.»:(ir)disin(NU)}. (ry

ra
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[

2

xJ, (Er)dg LOS(HUH'ZJ SR - DZ(C)]J,..[(ir)dicm(n())}- (12)

3. POINT DISLOCATION IN A FULL SPACE

The solution for an arbitrary shear dislocation in a full space is determined first. This
solution is well known but certain results are necessary for the interaction problem analysed
subscquently. Consider the point dislocation to be on the plane ; = 0 of the full space
—x <:< %, 0<r<xand 0 <0 < 2xlocated at the arbitrary point (ry, 0)y). Let the
dislocation have an r-directed opening of magnitude b, and a (-directed opening of b,. The
planc = = 0 1s then one of anti-symmetry on which the normal stress vanishes. The shear
displacements v and v arc zero everywhere on the surface except at the dislocation and may
be written as
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{:‘((:Zg))} = {:;}E-l’_é(r——ro)d(()—ﬁo). (13)
These expressions may be expanded in a Fourier series to give
(14

e(r.8.0)

b | 1 &
{bﬂ}%é(r——r“){i-%-zlcos (n(O—oo)]}

{u(r. a. 0)} _

The unknown functions F;{(S). Fi.(). Di(¢) and D} (&) are determined by matching

the above boundary conditions. From eqns (5) and (6). one set of conditions becomes
(15)

S ot eiivg senae b
EFHOJ(Erdé = 3 o(r—ry).
) nr

2(l—-v)j
(16)

’d l )
j EN(I=vFAO+ DOV (G dé = '4';;5(’_’0)[}7, cos (n0,) + b, sin (nf,)]
(17

l
. 3(r—ry)[h, cos (nly) — b, sin(ni,)]

f EL(1 =R = Dy, () dE = -
0
which have the solution
2a(k+ DEFE) = b J((Ery), (18)
n(x+ DNEFE) = b, cos ("()())[Jn i (ry)—=J, I(i’n)]
+ by sin (nl ), o (Era)+ 4, 1 Ergd]. (19)
8riD(E) = b, cos (nO) S, \(ro) +J, I(S:"u)] + by sin (”00)[-/n+ (Ero)—=J, 1 (Ery)]. (20)
where v = 3 —4v. From egns (9) and (10) the additional conditions are
ZJ EDYE, (Endé = Z’l"""s("‘ru)~ (21
0 nr
‘ EY - . - - - l - .
J =P+ DOV, .1 (Endé = prom O(r—ry)[b, sin(ny,) + b, cos (ny)], (22)
1]
- hd » . - - - l - .
f (I =v)F () = Dy(E)ae 1 (Gr)dE = 4;;0(r—ro)[b, sin (n0,) — b, cos (nb,)].  (23)
1)
(24)

which have the solution
8réDY(E) = buJ!(i"u).
(25)

2n(k+ DEFRUE) = b, sin (n04)[ s ((Era) =, 1 (Ero)]
—by cos (n0o)[Jns 1 (Erg) +J,_ 1 (Erg)].

=8nSD(E) = b, sin (n0,)[J, .| (Sro)+J -1 (Gra)] —ba cos (n0)[J, .\ (Sry) — 1(Sro)].
(26)
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The shear stress on the plane of the dislocation is the quantity of interest and can't
found by substituting eqns (18)~(20) into (7)~(8) and (24)-(26) into (11)}-{12) and supe
posing these expressions to obtatn the total shear stress. These expressions may be evaluate
by first writing the Bessel functions as

2n

¢ 2 . B
Jn—)(:r)w']mr&(ir): "{’Jn(‘:r)' J;p—!{:r)+jn’1(:r)?’:Ew‘fn(“;r)v (2’
or or

EATHE P

with similar relations holding for J,(Jry). After applying eqn (27). the sums may b
evaluated first. Here use is made of Neumann’s addition theorem (Watson, 1980)

Y cos (n(th — O, (Era) (Er) = HTW(ER) — Ty (Zra)JulEn). (28
1

with R* = ri+rj—2rr, cos (0 —0,). The additional sums can be evaluated by ditferentiating
the above expression with respect to 8. Evaluating the integrals next as follows

J.{J (:R)d:,,, I ' :J((:R)d:_ l " :Zj (:R)d: ! 29
. (A% &,’-R- USI', S'—Rgv “Sn\, s—-‘R\v (~A

and then performing the required differentiations from egn (27) allows closed form

cxpressions to be obtained. The shear stresses may be reduced 10 the form
dn{x+ 1 RIENE .
(:l )r:,(r‘()‘()) = {’}{‘ ){h, Cos (1~ 8,y + by sin {0~ )]
3O-K) .
+ - T b A(r™ +r5)cos (0 —04) ~rry[l $eos™ (0 —0,)]}
33—k :
R bulre sin (00— —rrycos (U =)y sin(0—0,)]. (30
4n(x+1 2w~ 1 .
w(': . r)r“,.(r, 4,0) = ’}t‘ ) by cos(B=0,)—b, sin{{} ~ )]
3 3'“ . ¥ . N
+ ﬁR)R) Bl =rg sin{0~0,) 4 rry cos (—8,)sin (0 —0,}]

33—« : |
(-ak»g’f~.}- burry sin® (0—0,).  (31)

It may be shown, by converting these expressions to Cartesian components, that the
present results agree with the known expressions [sce. for example, Lec er af. (1987)].

4, DISLOCATION INTERACTION WITH A PENNY-SHAPED CRACK

Consideration is now given to the interaction between a point shear dislocation and a
penny-shaped crack. As shown in Fig. 1, the crack occupies the region - = 0, r < a while
the dislocation is at the point (ry, #,.0) with r, > a. The dislocation has displacement
discontinuities of magnitude b, and b, in the r and 0 directions respectively. From the anti-
symmetry conditions, the problem is again reduced to one for a half space with zero
normal stress applied on the surface. The shear boundary conditions on the stresses and
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Point
dislocation

Fig. 1. Point shear dislocation coplanar with a penny-shaped crack.

displacements can now be given as

15.(r. 0.0y =0, 1.(rn0,0)=0, r<a, {32)
ul(r.8,0) 5 .
{t'(r. 0’0)} = {b,,}.?; Sr—r)o(tl—0,), r>a. 33)

As with the full space solution, the boundary conditions are met in two parts. The first
step 1s to consider the cosine expansion of ® and the sine expansion of ¢ [thus utilizing
eqns (5)-(8)]. The transform functions are first redefined as

ERE =@, 2EF) = 20— 51 (), (34.39)
25°D3(&) = 2O+ 5 ¥ (D). (36)

Making the following change of variables

. (2-v?
r=ap, ry=dp,, E=ypla, n=m+l, = e 37

and with the substitutions

Yolrla) = §u(3), () =, (), a(vfa) = §a(p). (38)

the contribution of these terms to the boundary conditions in eqns (32)~(33) can be written
as

J’O ‘}’%(}')J 1(p)dy =0, p<|, j Yo (ypydy = fp), p>1, (39,40
n

L W) mer(vp)dy =0, p <1, j (N (ypydy =0, p<1, (41,42)
ki

sat 29-21.F
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“, X

;J W)+ (0] (yp)dy = jlp). p > 1, (43)
)
20
pj W )+ (ep)dy = hip). p> L. (44)

Here the functions f(p). j{p) and A(p) are defined as

flp) = ;;!'(K+ Oy dalp—po)). (45)
2—v
jlp) = Ty dalp — pab, cos (n0,) + by sin (n6,)]. (46)
| .
h{p) = 72\}; oalp —pa)[b, cos (nfl,} — b, sin (nf)]. (47}

The solution to the dual integral cquations (39) and (40) is easily found as (Sneddon,
1966)

(e 2 d (g

Foly) =1 J BTG dr Pl = - VT J Herde (48)
1 I de J, //13~I:
A% A\
Substituting for f(p) and using cqns (34), (37) and (38) results in
~ T L A .
() = - \/7 R(K+l)§ Try (r_v_/).g)_x_v-l\z(;/f)d/;- (49)
in o 0

The integral is divergent at the upper limit. This is associated with the dislocation in a full
space (¢ = 0) as discussed by Hanson (1990). Evaluating the divergent integral as follows

SRS LERAR U
J\ / > ! TE?/;)g / = - A " r()‘ll(‘:r())‘ (50)
0 ("1)—/’) ) 2

gives the result

(= b, : VAR A :
Fi(g) = J(Sry) + AT 373 Jy Z(C/;) d/j . (31)

2n(n+ DE NI

From egn (18), it is casy to verify that the first term of eqn (51) represents the full space
contribution. The integral represents the interaction which vanishes for ¢ — 0.

Equations (41)-(44) are coupled dual integral cquations to determine the unknown
function ¢, () and ¥ .(»). The solution is given by Keer (1968) to be

i = -p>! J B s s Gs() A, (52)
/ ]
2
1 .
D) = — };l&l(_l')‘}- \:J B0, s (eDh(B) dp, (53)
/i

N
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) = - P [Feitede g J' y(P)dp
3 b\/I_!dﬂ 5 /p:“_‘gz ! - b(l*b}ﬁdﬁ
(54, 55
there
9(p) = —bp*h(p)+(2m+1)p%j(p) = 2m+ DBj(p). (56)

ubstituting eqns (46)-(47) into (54) and (56) and substituting (56) into (55) yields
xpressions for #,(f) and h;(B). Putting these into eqns (52) and (53) determines ¥ () and
"y (v). From eqns (37) and (38). ¢ (&) and () may be given as

b . .
1) = i‘?{(ff—"il')' (b, cos (nfy) — by sin (nfo)]J, -1 (Ero)
§e—v) b 0 by si .01/, Ere)
7n(h+l)[ » €08 (1) + by sin (n8y)]J, ., (Sro
\/—C; l _"+|J\“t”‘!!: "1 |‘_:2(‘&3f‘){4(!)dt‘ (57)
\/77[ ’5{’\4‘” 4 {rg—1t7) °
. Lo 2=v)
() e 5‘{’:(%)“}" 7171!};‘ [b, cos (nll) + by sin (nly)}J, (o)

e RGN de
+ \/S ( “:) [h, cos (nlhy) + by sin (n0)jro ™" *j 8D (58)
ny”

0 ("a o R A
ith
(1) = —~vh[b, cos (nb,) —by sin (ny)] —(2-v)(2n+ 1)
x [b, cos (nu) +by sin (10,)] + 212 — v)[b, cOs (n0,) + by sin (n0,)] : (59)
t)

tderiving eqns (57) and (58), the following divergent integrals have been used to subtract
1e full space contribution

J"”’”’ NZJ!'" ;,7(%3) d{ \/ﬁé',, {Ery) (60)

) (rg—11)"? \/i
J‘r“fnsmjmt;z(‘:f)df _ \/;C:
)

(ra—13)*? - 2\/2*”’1')*"{»/«“({’0)4“(2"4"l)-ln-:(f"o)}« (61)

se of eqns (35) and (36) allows F3(&) and D} (&) to be evaluated. Substituting the non-
tegral terms of eqns (57) and (58) into eqns (35) and (36) verifies that the full space
dution given in eqns (19) and (20) is obtained. The integral terms again represent the
teraction between the dislocation and the crack.

It remains to determine the functions D4($), Di(<) and F,(&). These can be found by
msidering the sine expansion of @ and the cosine expansion of ¥ {thus using eqns (9)-
2)]. The following definitions are made



2678 M. T. HansoN

FOYD =wa@). 2D = ~wi(D— 5 @), (62, 63)
2R = 0x() - 5= 013, (64)

Using the substitutions in eqn (37) as well as
wo(v/a) = Wo(¥). W, (¥/a) =a&,(V). w(ya) = d:(1). (65)

the remaining boundary conditions in eqns (32)-(33) become

j yao (3 (yo)dy =0, p < L. f ay(¥) i (yo)dy = f(p). p> 1,
1] 0

(66.67)

e

J Y023 s (yp)dyr =0, p <1, J yo, (M (yp)dy =0, p <1,
0

0

(68, 69)
2 s

p ﬁ (@) +b@:(0) s 2 (¥p)dy = j(p). p> 1, (70)

2 €
; f (6 (1) + B (In(s0) dy = hip), o> L. )

The functions f(p), j(p) and A(p) arc now defined as
by
S = O(N[n—ﬁu]) (712)
3.
[I) h /’U])[b sin (n()o) — by cos (n()())]. (73)
1

h(p) = ;;go'(a[p —pa)[b, sin (nfy) + by cos (nb,)]. (74)

The integral equations (66)~(71) are analogous to those in eqns (39)-(44). The solution for
@o(y) is given in eqn (48) while @, (y) and &,(y) are given in eqns (52)-(56). Equations
(72)-(74) are uscd for f(p). j{p) and h{p). Omitting the details, the final results are

b i YS 2
Dy(g )' [J (Sro)+ \/ng , (ru 2 ) Jw‘(s\‘)d‘:} (73)
w, (&) = Inle :_ (#, sin (nfy) + by cos (ny)]J, . (Erq)
fn‘(*; 5 (b, sin (n0) = by €03 (109)) 1 (8ro)

4 ! a2y L(ENM () de
Ve ,o.n,.f - aGOMWdr o
\/27[ ﬂ(h+l) 0 (rg—t)
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w:(8) = — 31O+ oD b, sin (1) — B, €05 (1B, 1(3r0)

= a =52 =
‘ﬁ @2-v ) (6, sin (n6s) by cos (nfo)]r ™" j /S UL

U/ N T
with
M(t) = —vb[b, sin(nfy) + b, cos (n0y)] —(2—v)(2n+ 1)

x [b, sin (nfy) — by cos (n6y)] +2n(2— v)[b, sin (nfy) — b, cos (nby)] % (78)
0

Substituting eqns (76) and (77) into eqns (63) and (64) allows D;(£) and F; (&) to be
evaluated. The full space solution in eqns (24)-(26) are again obtained from the closed
form terms in eqns (75)-(77).

The two quantities of interest now are the displacement discontinuities inside the crack
and the shear stress on the crack plane outside the crack. The determination of the crack
opening displacement requires the evaluation of the expressions in eqns (5), (6). (9) and
(10). Adding eqns (5) and (9) gives the total radial displacement u(r, 8, 0) for the half space
while superposing eqns (6) and (10) yiclds the total angular displacement v(r, 0. 0). The first
step is to perform the back substitutions for the functions F,($) and D,({). Here con-
sideration need only be given to the terms containing integrals on 0 — «, since the closed
form expressions represent the dislocation in the absence of the crack and give a zero
contribution. The displacements may be found in closed form by first evaluating the Bessel
intcgrals as

© ) ‘(u — B3y If’(a b)
1hu-4 A Q
L t JilanJ, bty dt = GGy (79

and then applying the result

“ ' =¥z | 80
, ROy T T S Ty (80)

The sums may be evaluated by the formulae in Appendix A. After some rather lengthy
manipulations the final results may be given as

2(1+v)cos (8—0,) —v(r/ry)
2R*

7r(2—v)' u(r00)—b{
\/____

2vrry sin? (0—0 . - g
_2vrr 511;4( 0)}+bu sin (0—0,) {( sz)+v(rRJro)}‘ (81)
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n(v—x)fV"i av(rOO)—h sin (0— o(,){ l,+-”i’-'_"—5)}

+bn{?(l—"v)cos(O 00)+v(r/ry) "vrr0 sinz(()——Oo)}. 82)

2R? RY

Multiplying the above expressions by two gives the total displacement discontinuity across
the crack faces. The above equations are in agreement with the isotropic limit of the results
recently given by Fabrikant (1987b).
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To determine the shear stresses, the integral and nonintegral terms of eqns (S1)
(57) and (58) as well as eqns {75)-(77) are again considered separately. The closed form
expressions from these equations represent the dislocation in a full space and hence the
shear stress on the surface is given by eqns (30). (31). It remains to determine the contribution
from the terms containing integrals on 0 — a, which represent the interaction. The resulting
expressions {after the back substitutions are made and eqns (7). (8). (11) and (12) are
appropriately superposed] may be evaluated as follows. First the Bessel integrals may be
performed by using eqn (79). Then the sums can be evaluated by using Appendix A. The
resulting expressions may be put in the form

D ey =T D 0y j 1b.PO+ QW] )
H H o (7 u—’ U —)?

Tfmgﬁ.\.i‘“‘ u(", 9‘ 0) - }E“&tvl) F( 0 0)+ {b R([)+bl?S(!)} d‘[‘ ' (84}
i i Rat (rr)"‘[ ) (f -1 }

where t5,(r.0.0) and tf(r,0.0) are the full space solutions from eqns (30). (31) and the
functions P(r), Q(r), R(1) and S(t) are given in Appendix B. From eqns (83), (84) it is
evident that the shear stresses contain a square root singularity asr —»a” orry > a”. All
of the integrals in (83), (84) can be evaluated using the results in Appendix C. The shear
stresses then become
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The modes Il and [11 stress intensity factors are the coefficients of the square root
singularities and are defined as

Ku(0) = lim /2n(r—a

Ki(0) = lim  /2n(r—a)t.y(r.0,0).

(87, 88)
From the previous results it is casy to verify

DE-v
M ) ri—a[a* +rd—2ar, cos (0 —0,)]K,(0) =
2;1\/7w

a dvar, sin® (0—0,) }
1 0—10, gy
{ (I+v)cos( ) = r(, [a‘+r5-—-2(1r,, cos (0—0,)]

. v(a® —ri)
+2hy sin (0_00){(1 N+ [a® +ri=2ar, cos (0—90)]}' (89)
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(2 —v)
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The shear stress intensity factors found by Gao (1989) and the shear stresses given by Gao
and Rice (1989) for a point coplanar shear dislocation ahead of a haif plane crack are
obtained in the limit a — .

5. INTEGRAL FORMULATION FOR MULTIPLE OR WAVY CRACKS

An integral formulation for multiple coplanar cracks or cracks with large amplitude
variations in the crack front curvature, subjected to shear loading, can be obtained by
distributing the point dislocation solution. The derivation of the nonsingular integral
equations for shear loading of multiple coplanar circular cracks used by Fabrikant (1989)
is straightforward and left to the interested reader. Here new singular integral equations
are derived.

Consider first the case of a finite size planar crack with a wavy crack front. Here the
total crack domain is designated as S, while that of a circular region totally encompassed
in §,is denoted as S,.. A polar coordinate systemis taken centered in S, The crack occupying
S; can be modeled as a penny-shaped crack in §, with distributed dislocations to account
for the arca S, — S,. The total stress acting on the region S, must equal the applied loadings
p.(r.0) and p,(r, 0). The boundary conditions in S, arc met by applying the loadings p, and
po to the penny-shaped crack. If the total shear stresses outside of the region S, caused by
a point dislocation at (ry, 0,) are denoted as . (r. 0. r,.0,) and 10,.(r.0,r,.0,) [which arc
given in eqns (85), (86) with b, and b, replaced with b,(r,. 0,) and b,(r,. 04)]. then the
boundary conditions for S, — 8, become

T:J:(ri{))'q"J\J r‘,:(r,(),ro,()(,)r(, dr() dUU =Pr(’.0)~ r-()ES\_S«;‘ (9I)
AR

0.(r, 0)+jJ th.(r, 0,1y, 8,)rg dry A8y = pu(r,0), r.0eS,—S.. (92)
5, -5,

Here t%(r,0) and t5.(r, 0) are the known shear stresses outside of S, when p, and p, are
applied to the faces of S, [see Sankar and Fabrikant (1983) for explicit expressions]. The
boundary conditions in S, remain satisfied since the dislocation solution introduces no
additional shear stresses in S.. Equations (91), (92) are coupled singular integral equations
to determine the crack openings b,(ro,0,) and b,(re.8,) in S;—S.. In contrast to the
nonsingular integral equations in Fabrikant (1989), these integral equations are strongly
(hyper) singular. The singular terms in (91), (92) arise from the contribution of the stresses
corresponding to the point dislocation in a full space given in equations (30)., (31). Although
the hyper-singular terms render the integrals divergent, their contribution to the integral
equations (91), (92) are as the finite part of the divergent integrals.

The advantage here, over previous integral formulations, is that only the reduced crack
domain S,— S, need be considered in a numerical solution. A numerical solution to these
equations is not approached presently, however cquations of this type have received con-
siderable attention recently. A numerical solution to (91), (92) follows analogously to the
procedure given by Murakami (1985) for the surface crack, as well as Lee et al. (1987) and
Hanson et al. (1989) who considered a bimaterial interface. A method for the evaluation



Infinitesimal glide dislocation loop coplanar with peany-shaped crack 2683

of the finite part integrals for a triangular discretization is given by Lee and Keer (1986)
while regular quadratures can be used for the interaction terms. From egns (85). (86). the
interaction terms also contain a square root (integrable) singularity as ry — ¢~ which must
be accounted for in an accurate numerical treatment.

The procedure outlined above for the wavy crack front problem can also be extended
to analyse multiple coplanar cracks of arbitrary geometry in the vicinity of a circular crack.
The procedure consists of distributing the dislocation solution to account for the additional
crack openings. Equating the total shear stress to the applied shear loading gives rise to
coupled hyper-singular integral equations over the additional crack openings. This elim-
inates the need to consider the domain of the circular crack in the numerical treatment and
will allow a more accurate numerical result.

6. CONCLUSIONS

The current study has provided the theoretical treatment necessary to accurately
analyse multiple coplanar cracks, or cracks with large amplitude variations in the crack
front curvature, subjected to shear loading. Multiple crack interactions may arise when
microcracking occurs in the process zone of a macrocrack. Large amplitude variations in
the crack front curvature can occur when a crack front impinges on a region of higher
fracture toughness. For either case, in order to predict crack advance an accurate numerical
solution is needed to determine stress intensity factors. The present integral formulations
will allow a higher accuracy numcrical treatment over present solution methods.
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APPENDIX C

The integrals used to determine the shear stresses may be evaluated as follows. Equation (9) of Fabnikant
(1987b) gives the result
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The following integral is evaluated in Appendix B of Hanson (1990)
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One of the remaining integrals in eqn (83), (84) with a 3,2 singularity is of the following form
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The additional x? factor in the numerator [compared to eqn (C5)] renders the integral difficult to evaluate in a
closed form. It may be partially evaluated by substituting
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Using eqn (C5) and the integral
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the integral in (C7) takes the form
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This last integral can be reduced to one with square root singularities by using the relation
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The last integral in eqn (83), (84) with a 3/2 singularity is of the type
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Using eqn (C11) and an integration by parts gives
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The remaining integrals in (C12) and (C14) have square root singularities. When these terms are combined
with the other square root singular terms in eqns (83), (84) that do not fit the forms in (Cl), (C3), (C4), the
resulting combinations can be put in these forms and evaluated.



