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Abstract-This analysis develops a Green's function for a point shear dislocation coplanar with a
penny.shaped crack. The solution procedure consists of using anti-symmetry conditions which allow
the reduction to an asymmetric mixed boundary value problem for a halfspace. The mixed boundary
conditions between the shear stresses and displacements on the surface are formulated in terms of
a single pair and two coupled pairs of dual integral equations which have known solutions. Closed
form expressions arc found for the shear displacement discontinuity inside the crack as well as for
the shear stress on the crack-dislocation plane. The dislocation interaction solution is then used to
formulate new integral equations fllr shear loading of multiple coplamlr cracks or cracks with
nonuniform crack fronts.

I. INTRODUCTION

Recent effort in the ,lrea of three-dimensional fracture mechanics has been aimed at the
development of a method for the analysis of the nonuniform advancement of a crack front.
A crack front may advance in a nonuniform tn,lOner due to several f~lctors such as the nature
of the applied loading or intenlctions of the crack with regions ofd,lmage, heterogeneity or
transformations. Typical examples of these crack interactions arc the formation ofcleavage
fractures or micro<.:racks in a brittk material ahead of a growing cra<.:k, heterogeneities
placed in a matrix to improve fracture resistance and strength, or the transformation
toughening phenomenon of second phase particles in ceramic materials. One method of
analysis for these three-dimensional fracture problems is thc formulation of hyper-singular
integral equations, by distributing dislocations ovcr the entire cracked domain, which can
be solved numerically [sec, for example, Murakami and Nemat-Nasser (1982, 1983), lce
et al. (1987) and Hanson et al. (1989)]. A straightforward numerical solution of boundary
integral equations over the crack domain requires discretizing the crack into elements over
which the crack opening displacement is given appropriate representations. Howcver, when
the cracked domain is large and there are high amplitude variations in the crack front
curvature, a large number of elements are often needed to obtain results of acceptable
accuracy. This neccssitates the need for large computcr storage and computational time. A
first order perturbation method, which overcomes this ditficulty, has been devcloped by
several investigators to analyse nonuniform crack fronts.

Apparently the first such formulation was given by Panasyuk (1962) [see Appendix B
of Gao and Rice (198741)] who developed a tirst order perturbation solution for the special
case of a planar tcnsile crack of ne'lr circular geometry. A general tirst order theory was
constructed by Rice (198541) for the variation in the elastic tield in a cracked body caused
by perturbation in the crack front position. His analysis considered mode I loading of a
half plane crack. Gao and Rice (1986) extended this work to the shear mode case. The tirst
order analysis was applied to the planar circular internal crack under mode I loading by
Gao and Rice (1987a) and Gao and Rice (1987b) considered the external circular crack.
The ncarly circular internal Cnlck under shear loading was analysed by Gao (1988). The
first order theory developed relics on the knowledge of the weight function (Bucek ncr. 1970.
1973; Rice, 1972) which gives the stress intensity factor distribution around a crack front
caused by an arbitrarily located point body force. Certain crack face weight functions (a
limiting case for a generally located point force) have been known for some time, however
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the general weight functions for the half plane and circular cracks have only been recently
determined (Rice. 1985a: Bueckner. 1987; Gao, 1989a).

Although a first order theory avoids the heavy numerical computations, it is quan­
titatively limited. To overcome this difficulty, Rice (1987) has proposed two alternative
procedures. One method is a series of integrations of the first order theory. This amounts
to numerically determining a new weight function for the perturbed crack geometry and
sequentially applying the first order theory. This method was recently used by Bower and
Ortiz (1990). Secondly, he proposed the solution of integral equations over a reduced crack
domain by distributing dislocations between the wavy crack boundary and that of the
reference (half plane or circular) crack. This solution procedure was recently used suc­
cessfully by Fares (1989) in analysing a half plane crack with a wavy crack front and crack
trapping by arrays of obstacles.

This second procedure requires the determination of the interaction between the
reference crack and a point dislocation. As demonstrated by Rice (1985a), the weight
function provides information not only on the stress intensity factor for a point body force
and on the stress intensity factor around a perturbed crack front, but it can also be used to
determine the interactions between sources of internal stress (such as dislocations) and
crack tips. His analysis showed that these interactions could be given as double integrals
of products of weight functions over the entire crack history. This property was used by
Rice (19R5b) to analyse the interactions between a half plane crack and transformation
strains or dislocations. The double integral was evaluated in closed form to give the stress
tidd ahead of a half plane crack when a mode I point dislocation was on the erack plane
ahead of the cra<.:k. This is the point dislocation Green's fun<.:tion used in the numerical
analysis by Fan:s (19~9). Anderson and Ri<.:e (19~7) also utilized this solution to give a
detailed consideration of the stress field and sdf energy of semicir<.:ular and rectangular
<.:oplanar dislocation loops emanating from a half plane crack under mode I loading. The
shear mode case for the half plane was studied by Gao (19S9b) and Gao and Rice (1989).
The closed form shear stress ahead of a half plane crack caused by a shear mode dislocation
coplanar with the crack was given by Gao and Rice (1989). Karihaloo and Huang (1989)
have also used this method to study the interactions between a half plane crack and regions
of shear transformation strains.

The double integrals of products of weight functions over the crack history, required
to determine the interactions, are formidable and have only been evaluated in closed form
for the two special cases of the half plane crack noted above. Recently, in applying the
distributed dislocation idea of Rice (1985b, 1987) to the large amplitude variation of a finite
size crack front, Hanson (1990, 1991) determined in closed form the interaction between a
point prismatic dislocation coplanar with a circular internal or external crack for a trans­
versely isotropic material. The solution was found by using well known methods from
potential theory rather than considering double integrals of Bueckner's (1987) and Gao's
(1989a) weight functions for the circular crack. The dislocation interaction solution was
L1sed to derive Fabrikant's (l987a) nonsingular integral equations for multiple coplanar
circular cracks as well as to derive new singular integral equations over a reduced crack
domain for Lise in analysing multiple coplanar cracks and planar cracks with large amplitude
variations in the crack front curvature.

In the present analysis, the solution of Hanson (1990) is extended to the shear mode
case. Again, methods from potential theory are utilized and an extension is made to the
method developed by Westman (1965) to formulate the problem in terms of a single pair
and coupled pairs of dual integral equations which have known solutions. Having the
solution to the integral equations. the shear displacement discontinuities inside the crack
and the shear stress on the crack dislocation plane are found in closed form. Although the
coplanar shear dislocation is certainly not the most interesting case from the standpoint of
crack tip dislocation emission as studied by Gao and Rice (1989), the solution obtained is
valuable in considering multiple coplanar cracks or planar cracks with large variations in
the crack front curvature subjected to shear loading. New singular integral equations over
a reduced crack domain arc obtained which can be used to accurately analyse a finite size
planar crack with a wavy crack front or multiple coplanar cracks subjected to shear loading.
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2. FORMULATION

The full space dislocation interaction problem studied in this analysis is reduced by
anti-symmetry conditions to a mixed boundary value problem for a half space. A convenient
starting point for determining a solution is the potential function representation for dis­
placements and stresses in a half space => 0 given by Muki (1960). The cylindrical coor­
dinates (r. 0. =) are used and the displacements u. t' and II' are in the r. 0 and =directions.
respectively. In the sequel J1 is the shear modulus and l' is Poisson's ratio. The displacements
and stresses are given in terms of a biharmonic function ({> and a harmonic function 1/1. The
interested reader is referred to Muki (1960) for the explicit relations.

For the cylindrical geometry considered here. appropriate representations for the
functions ({> and 1/1 in the half space => 0 are given as

T iT
I/I(f. 0.=) = L ~D~We-;: J.(~r) d~ cos (ne)

o 0

+f IT ~D~We-;:J.(~r)d~sin(n(}). (I)
I Jo

((>(f.O.:) =f IT: ~[£~W+:~(~)le-~: J.(~f)d~ cos (nO)
o In

+ f IT: ~[£~W +:F:(~)l e-~: J.(~r) d~ sin (nO). (2)
I Jo

The quantities which will be of interest ,Ire on the surface == 0 of the half space and
consist of the shear displacements U(f. O. 0) and I'(f. O. 0) as well as the stresses (1::<r. O. 0).
<,,(f. o. 0) and <II: (f. O. 0). Considering the normal stress first. it is easy to show that

+2/1f rL

~J[( 1-2v)F:.W + ~£:.(~»)J,,(~f) d~ sin (nO). (3)
I Ju

In the following analysis. a solution with vanishing normal stress on the surface is required.
This condition is satistled by the relations

(4)

In order to match boundary conditions on the surface. the shear stresses and dis­
placements are separated as follows. Taking the cosine expansion of ({> and the sine expan­
sion of 1/1 and using eqn (4) results in

u(r.O.O) = 2(I-l') I' (F"u(~)J,(~f)d~-f Ie ~2[(I-l')~(~)-D~Wl
In I Jo

X J. _ I (~f) d~ cos (nO) + ±I r ~2( I - v)~(~) + D~(~)lJH I (~r) d~ cos (nO). (5)
I Jo

v(r.O.O) =± Ie ~2[(I-v)~(~)-D~W]J._,(~r)d~sin(nO)
I Jo

+ ±I" ~2[( I - v)~(~) + D~(~)]Jn+ I (~r) d~ sin (nO). (6)
I Jo
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{

~ ;0,

r",(r. 0. 0) = II - L J ~'[~(~) - D~(~)]ln _I(~r) d~ sin (nO)
I Il

Taking the sine expansion of <t> and the cosine expansion of 1/1 and using eqn (4) gives

,f'+L ([( I - \')r;,(~) - D~Wll". I (~r) d~ sin (nO).
I "

(9)

x l" I (~r) d~ cos (nO) - If' ([( I - \')I'~,W - f)~,(~)ll". I (~,.) d~ cos (nO), (10)
I "

r,,(r. O. 0) = II {I j" ~ \[F~(~) + D~,(~)Jl" I(~,.) d~ sin (I/IJ)
I "

-If' ~ \[r;,(~) - D~(~)JJ". I(~,.) d~ sin (nu)}. (II)
I "

xl" ,(~r)d~cos(1l0)+If' ~)[r;,(~)-D~W]J"'I(~r)d~COS(no)}. (12)
I "

l POINT DISLOCATION IN A FULL SPACE

The solution for an arbitrary shcar dislocation in a ful1 space is determined IIrst. This
solution is wel1 known but certain results are necessary for the interaction problem analysed
subsequently. Consider the point dislocation to be on the plane:: = 0 of the ful1 space
- 'l: < :: < x, 0 < r < 'l: and 0 < 0 < 2rr located .It the arbitrary point (r o• On). Let the
dislocation have an r-directed opening of magnitude h, and a O-din:cted opening of ho• The
plane:: = 0 is then one of anti-symmetry on which the normal stress vanishes. The shear
displacements II and r are zero everywhere on the surface except at the dislocation and may
be written as
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{
u(r. e. D)} {b'} I _ .
dr.8.0) = b» 2rO(r-ro)o(O-Oo).

These expressions may be expanded in a Fourier series to give

{
u(r. O. O)} {b'} 1 { I ~ }
1·(r.O.O) = b

H
2nr<5(r-ro) 2+'1cos[n(O-Oo)] .
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( 13)

( 14)

The unknown functions F;,(~). F;.(~). D~(~) and D~(~) are determined by matching
the above boundary conditions. From eqns (5) and (6). one set of conditions becomes

( 15)

which have the solution

( 18)

2n(I\:+ I )ef;;W = h, cos ("On)(J" ,I (¢rn) -J" I (~rn)l

+ 1>1/ sin ("Oo)[J", 1(ero) +J" . I (¢ro)). (19)

where I\: = 3 -4\'. From eqns (9) and (10) the additional conditions arc

(21 )

iL -I
~ 1[( 1- v)F;,(~) + D~(~)]J• . I(~r) d~ = -4- <5(r - ro)[b, sin (nO o)+ bl/ cos (nO o»). (22)

o nr

which have the solution

(24)

2n(I\:+ I)~F;,(~) = b, sin (nOo)[Jn+ ,(¢rn) -J•. I(~ro)]

-ho cos ("Oo)[J.... 1(~ro) +J. _1(¢ro)]. (25)

- 8n:¢D~(¢) = h, sin (nOo)[J... I (¢ro) + J. _,(¢ro)]- bl/ cos (nOo)[Jn+ 1(~r0) -J._ I (~ro)].

(26)
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The shear stress on the plane of the dislocation is the quantity of interest and can I
found by substituting eqns (18)-(20) into (7)-(8) and (24)-(26) into (1l)-{l2) and supe
posing these expressions to obtain the total shear stress. These expressions may be evaluate
by first writing the Bessel functions as

with similar relations holding for In(~ro). After applying egn (27). the sums may c
evaluated first. Here use is made of Neumann's addition theorem (Watson. 1980)

2: cos [n(IJ - Oo)lJ,,(~ro)Jn(~r) = ~[Jil('; R) - J Il ( ';ro)Jn(';r)].
I

(28

with R C = r C+d - 2rrocos (0 - 00), The additional sums can be evaluated by ditTerentiatin!
the above expression with respect to e. Evaluating the integrals next as follows

R" (29:

and then performing the required dillcrentiations from eqn (27) allows closed form
e.\;prcssions to be obtained. The shear stresses may be reduced to the form

4n:(1\+1) 2(11:-1) .
",(r,tJ, O) = \ [h, Cos({j-On)+h" Sill (0-0 0 )\

Jl R

4n:(k:+1). 2(1\-1) .
'o;(r, 0, 0) =, .. (ho cos (0 - ( 0 ) - h, sIn (0 - ( 0 )]

JI R

3(3-K) , . .
+-R 5 h,( -rii SIn (0-00 ) +rrocos (0-0 0 ) Sin (0-0 0 )]

It may be shown. by converting these expressions to Cartesian components, that the
present results agree with the known expressions [see. for example. Lee cI al. (1987)].

4. DISLOCATtON tNTERACTION WtTH A PENNY-SHAPED CRACK

Consideration is now given to the interaction between a point shear dislocation and a
penny-shaped crack. As shown in Fig. I, the crack occupies the region == O. r < a while
the dislocation is at the point (ro, Oil, 0) with rn > a. The dislocation has displacement
discontinuities of magnitude b, and hn in the rand 0 directions respectively. From the anti­
symmetry conditions, the problem is again reduced to one for a half space with zero
normal stress applied on the surface. The shear boundary conditions on the stresses and
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z

Point
dislocation

Fig, I. Point shear dislocation coplanar with a penny-shaped crack,

displacements can now be given as

'o:(r. O. 0) = O. 'r:(r. O. 0) = O. r < a.

{
Ii(r. o. O)} {hr } I , .

) = I ') c)(r-rn)i5(O-()n). r > a.
l'(r.l. 0) ,o_r
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(32)

(33)

As with the full spal:e solution. the boundary conditions arc met in two parts, The first
step is to consider the cosine expansion of (I) and the sine expansion of r/J [thus utilizing
eqns (5)-(8)], The transform functions arc lirst redefined as

(34.35)

Making the following change of variables

(36)

r = lip. r n =apn.

and with the substitutions

~=yla. n=I1I+I.
h = (2-v)~

(37)

(38)

the contribution of these terms to the boundary conditions in eqns (32)-(33) can be written
as

L'" y.f~(y)J",+~(yp)dy = O. p < I, L'" y.fl (y)J",(yp) dy = O. p < 1. (41.42)
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(43 )

Here the functionsf(p),j(p) and h(p) are defined as

b,
f(p) = :.,-(.~+1) 6(a[p-poD._n: 1\ p

p> 1. (44)

(45)

I
h(p) = ----,()(a[p-po])[h, cos(fI(}o)-h" sin (f1(}o)].

Tn' P"

(46)

(47)

The solution to the dual integral equations (.39) and (40) is easily found as (Sneddon.
1966)

j" ",/2 "df' /(p)dp,/ioCI') = yl ~ I (/)(t)J,~(rt)dl. (/J(t) = - / I . /..
v'n: dl t .jP"_I'

Substituting forl(/J) and using eqns (J4), (37) and OX) results in

(4X)

(49)

The integral is divergent at the upper limit. This is associated with the dislocation in a full
space (a = 0) as discussed by Hanson (1990). Evaluating the divergent integral as follows

(50)

gives the result

(51 )

From eqn (18), it is easy to verify that the first term ofeqn (51) represents the full space
contribution. The integral represents the interaction which vanishes for a -+ O.

Equations (41 )-(44) arc coupled dual integral equations to determine the unknown
function t/i,(y) and t/i~CI'). The solution is given by Keer (1968) to be

(52)

(53)
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rhere

(56)

ubstituting eqns (46)-(47) into (54) and (56) and substituting (56) into (55) yields
Itpressions for h!(P) and hJ(fJ). Putting these into eqns (52) and (53) detennines tf ley) and
:!lv). From eqns (37) and (38). t/JIW and t/J!(~) may be given as

·1 (~) = 2n:;:: I) [br cos (nOo) - b~ sin (nOo)JJ.- I (~ro)

=(' )
- I, -- v [hr cos (nOo) +b~ sin (nOo)]1o+ 1(~ro)

2n:(1I.' + I)

(57)

(58)

ith

(I) = - vh[hr cos (n{)o) -hll sin (n{)o)] - (2 - v)(2n + I)
,

t-
x [h r cos (nOo) +hu sin (nOo)] + 2n(2 - v)[h, cos (nOu) + bo sin (110 0 )] -, • (59)

rij

\ deriving eqns (57) and (58), the following divergent integrals have been used to subtract
Ie full space contribution

se of eqns (35) and (36) allows f;(~) and D~(e) to be evaluated. Substituting the non­
tegral terms of eqns (57) and (58) into eqns (35) and (36) verifies that the full space
,Iution given in eqns (19) and (20) is obtained. The integral terms again represent the
teraction between the dislocation and the crack.

It remains to determine the functions D~(~), D~(e) and F':,(e). These can be found by
'nsidering the sine expansion of €I> and the cosine expansion of r/I [thus using eqns (9)­
2)}. The following definitions are made
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(62,63)

Using the substitutions in eqn (37) as well as

the remaining boundary conditions in eqns (32)-(33) become

(64)

(65)

t' cijQ(y)J, (yp) dy = f(p). p > I.

(66.67)

IX- YWI (y)J",(yp) dy = O. p < I.
I)

(68.69)

J;1~ [(v,(y)+hcij~(y)jJ",.~CY'P)dy= j(p). p> J, (70)

"If'=/ [UJI (.I') +ciil(y)jJ",(yp) dy = h(p),
I 0

The functionsI(p). j(p) and hlp) arc now detined as

o
/(1') ="1 /I 6(a[p-po]l._rtp

p> I. (71 )

(72)

I
hlp) == -,ij(u[p - Po])[o, sin (nOI) + 0/1 cos (nOo)].

7T.I'p-

(73)

(74)

The integral equations (66)-(7\) are analogous to those in eqns (39)-(44). The solution for
wo(y) is given in eqn (48) while WI (y) and w~(y) are given in eqns (52)-(56). Equations
(72)-(74) are used for I(p),j(p) and hlp). Omitting the details. the final results arc

~("I-v)- 2-;~+ )j [h, sin (nOo) - hocos (nOo) ]In + I (~r()

r;i' I fa tn+ I(~J ,,(i't)M(t) dt
v~ _" ... 1 11-1, ... .."

-~---==='O 1 .,.., ,

j ! rt(/\:+ I) 0 (rO - t-»-_n

(75)

(76)
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~ (2-v) . _'_li"('-5ZJn+3'Z(~/)dl
+ r:::;=-b' [b,sm(nOo)-becos(nOo)]ro (' ')3' , (77)

V 2lt ltV' 0 rO - r i'

with

M(t) = - vb[b, sin (nOo) +b8 cos (nOo»)- (2 - \')(2n + I)

IZ
x [b, sin (nOo) - be cos (nOo)] +2n(2 - v)[b, sin (nOo) - by cos (nOo>J -,. (78)

rij

Substituting eqns (76) and (77) into eqns (63) and (64) allows D~(~) and P"W to be
evaluated. The full space solution in eqns (24)-(26) are again obtained from the closed
form terms in eqns (75)-(77).

The two quantities of interest now are the displacement discontinuities inside the crack
and the shear stress on the crack plane outside the crack. The determination of the crack
opening displacement requires the evaluation of the expressions in eqns (5), (6), (9) and
(10). Adding eqns (5) and (9) gives the total radial displacement lI(r, 0, 0) for the half space
while superposing eqns (6) and (10) yields the total angular displacement v(r, 0, 0). The first
step is to perform the back substitutions for the functions F.(~) and D.(~). Here con­
sideration need only be given to the terms containing integrals on a-- a, since the closed
form expressions represent the dislocation in the absence of the crack and give a zero
contribution. The displacements may be found in dosed form by first evaluating the Ressel
integrals as

f. '"' ty'(az-hZy-l'llI(a-h)
tl-I' AJ (at)} (ht)dt = -- ,--- - -~

II A" 2"-1' 'a"r().-Jl)

and then applying the result

(79)

(80)

The sums may be evaluated by the formulae in Appendix A. After some rather lengthy
manipulations the final results may be given as

(81 )

(82)

Multiplying the above expressions by two gives the total displacement discontinuity across
the crack faces. The above equations arc in agreement with the isotropic limit of the results
recently given by Fabrikant (1987b).
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To determine the shear stresses. the integral and nonintegral terms of eqns (51),
(57) and (58) as well as eqns (75)-(77) are again considered separately. The closed form
expressions from these equations represent the dislocation in a full space and hence the
shear stress on the surface is given byeqns (30), (31).lt remains to determine the contribution
from the terms containing integrals on 0 -- a, which represent the interaction. The resulting
expressions [after the back substitutions are made and eqns (7), (8), (II) and (12) are
appropriately superposed] may be evaluated as follows. First the Bessel integrals may be
performed by using eqn (79). Then the sums can be evaluated by using Appendix A. The
resulting expressions may be put in the form

where r~,(r, 0,0) and r;'J(r, 0, 0) are the full space solutions from eqns (30), (31) and the
functions P(t), QU), R(t) and S(t) are given in Appendix B. From eqns (83), (84) it is
evident that the shear stresses contain a square root singularity as r -+ a ~ or r n -+ a' . All
of the integrals in (83), (84) can be evaluated using the results in Appendix C. The shear
stresses then become

4I'rrn Sin
1

(O-Oo)} 2. I [ oR J
- R 4 + R I t,1I1 /' ,', •

'Y ru-trJr'-u'

{
• 31'(2-I')rroSin 1 (O-On)}

x -(2+1'-1")cos«(}-lJu)+ R 2
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4v~aJrro sin(O-Oo)cos(O-Oo) ~J~ ]
- R~ [r~r~+a~-2a~rro cos (O-Oo)f .

-------- -- ------- ._.
., • 1 .., , .... ,

4v-a Jrro sm- (0-01) . Jr" -tr J,- -a- . ]
- ----i?1 [r~~~+~/~-~!rr:-c-~s(O--O,JP.
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(85)

(86)

The modes II and III stress intensity factors are the cocttlcients of the square root
singularities and are defined as

KlI(O) = lim J2;(r--~/)rAr. 0, 0),
, -.u ..

From the previous results it is easy to verify

KIII(O) = lim J2rr(r-a)r,y(r. 0, 0).
, -a to

(87,88)

{
v(a~ -r5) }

+2h"sin(O-Oo) (I-v)+[! !., (00)]' (89)
a + r0 - _ar 0 cos - 0
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(90)

The shear stress intensity factors found by Gao (1989) and the shear stresses given by Gao
and Rice (1989) for a point coplanar shear dislocation ahead of a half plane crack are
obtained in the limit a -- x.

5. INTEGRAL FORMULATION FOR MULTIPLE OR WAVY CRACKS

An integral formulation for multiple coplanar cracks or cracks with large amplitude
variations in the crack front curvature. subjected to shear loading. can be obtained by
distributing the point dislocation solution. The derivation of the nonsingular integral
equations for shear loading of multiple coplanar circular cracks used by Fabrikant (1989)
is straightforward and left to the interested reader. Here new singular integral equations
arc derived.

Consider first the case of a linite sile planar crack with a wavy crack fronl. Here the
total crack domain is designated as 5 t while that of a circular region totally encompassed
in 5, is denoted as So' A polar coordinate system is taken centered in So' The crack occupying
5, can be modeled as a penny-shaped crack in So with distributed dislocations to account
for the area S, - .\. The total stress acting on the region St must equal the applied loadings
p,(r.O) and po(r, 0). Thc boundary conditions in _\ are met hy applying the loadings fI, and
Po to the penny-shaped crack. If the total shear stresses outside of the region So caused by
a point dislocation at (ro. (Jo) arc denoted as r;:(r. IJ. r o. ( 0 ) and r~,:(r. O. rn.O n) [which are
given in eqns (85). (86) with h, and ho replaced with h,(rn. On) and hf/(rn. Vn)]. then the
boundary conditions for S, - Sc become

Here r~:(r. 0) and r/~:(r, 0) are the known shear stresses outside of Sc when p, and Pu are
applied to the faces of Sc [see Sankar and Fabrikant (1983) for explicit expressions]. The
boundary conditions in Sc remain satisfied since the dislocation solution introduces no
additional shear stresses in Sc' Equations (91), (92) are coupled singular integral equations
to determine the crack openings b,(ro• ( 0 ) and bo(ro, Vo) in S,- So' In contrast to the
nonsingular integral equations in Fabrikant (1989). these integral eq uations are strongly
(hyper) singular. The singular terms in (91). (92) arise from the contribution of the stresses
corresponding to the point dislocation in a full space given in equations (30), (31). Although
the hyper-singular terms render the integrals divergent. their contribution to the integral
equations (91). (92) are as the finite part of the divergent integrals.

The advantage here. over previous integral formulations. is that only the reduced crack
domain SI - Sc need be considered in a numerical solution. A numerical solution to these
equations is not approached presently. however equations of this type have received con­
siderable attention recently. A numerical solution to (91). (92) follows analogously to the
procedure given by Murakami (1985) for the surface crack. as well as Lee el af. (1987) and
Hanson el al. (1989) who considered a bimaterial interface. A method for the evaluation
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of the finite part integrals for a triangular discretization is given by Lee and Keer (1986)
while regular quadratures can be used for the interaction terms. From eqns (85). (86). the
interaction terms also contain a square root (integrable) singularity as '0 -+ a- which must
be accounted for in an accurate numerical treatment.

The procedure outlined above for the wavy crack front problem can also be extended
to analyse multiple coplanar cracks of arbitrary geometry in the \;cinity of a circular crack.
The procedure consists of distributing the dislocation solution to account for the additional
crack openings. Equating the total shear stress to the applied shear loading gives rise to
coupled hyper-singular integral equations over the additional crack openings. This elim­
inates the need to consider the domain of the circular crack in the numerical treatment and
will allow a more accurate numerical result.

6. CONCLUSIONS

The current study has provided the theoretical treatment necessary to accurately
analyse multiple coplanar cracks. or cracks with large amplitude variations in the crack
front curvature. subjected to shear loading. Multiple crack interactions may arise when
microcracking occurs in the process zone of a macrocrack. Large amplitude variations in
the crack front curvature can occur when a crack front impinges on a region of higher
fracture toughness. For either case. in order to predict crack advance an accurate numerical
solution is needed to determine stress intensity factors. The present integral formulations
will allow a higher accuracy numerical tn:,ltmcnt over present solution methods.
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APPENDIX f\

L(' cps (",x)
,

I[WS(X) -II
-;;'-21 ws(x)'

(AI. A2)

L(2n + 1)1" .:os (rrx),
.11 ':OS (;() - I:

+-1' -21 ws(;()

41' Sin' Ix)

[I • I' ··21 ,:ps (xii'

L(2n t 1)1" sin ('n),
.1/ sin (x)

f 1 21 .:os (x)

L II' (' .:os (,n)
,

(A5)

APPFNDIX B

Tlic fundions {'(I).!J(I). R(I) and 5(1) arc given as

XI' sin' (x) )

11-t-I'-2Iws(xli'J'
(A6)

I { 2\'", , • ., 'I(2-\,){'(1) = - I [,-r,~-I I+~II +v)':'lS(O-O,,)I'lr'r,~-1
i( I) rr"

" . , .} I ,.,) '[ " 'I+~\'.:os(()-O,,)I·(r'-I')(r,~-I') + , ,-Svrr,,'ln'(I-O,,)1 r'r,~-I
i"(1)

- XI',.r" sin' (0 -O"lt'(r' - I' )(r,~ -I') +~,., cos iO -O,,)I'Ir' - I' )(r,~ - I' )[r'r;; - 1'1:

I ,. , ",.. l ,. 'I',: -16'''rr" Sin' (()-O,,)I (r' -I')(r,~-r) ,-r,j-I i'
(I)

(Iii)

(2·- I')!J(I)

(2'-I')R(I)

I
'(h-IISinIO-·O,,)I'[r'r,~-I'I:+, :~l'sin(O-O,,)

i'(1) , i' '(1)

x [r' I' - (I -- I' )r,~ I' - \'r' r,~J I' Ir' r,~ .- 1'1 - ~I" sin (0 - 0,,) I' (r' - 1')( r,~ - I' )

. 1 "~' > , • , ) } "' , , 'I' (B_')x[r'r,~+t'+~I'rr"Clls((J-(},,)I:+ -, ,_,_\"r'r,jsin (1-/,,)1 (r'-I')(r:,-I' j'

i' (I)

I
'-(h+I),in((I-O,,)r'[r'r,i -1'1: +. :4\'Sin(O-O,,)

;'(1) , i' '(I)

x [,'(r' ..- r,~) - I'r'I' + I'r'r,~II'[r'r,~ - ('I + ~\" ,in (O-O,,)I'(r' - I')(r,',-I')

x[r'r'+('+41'rr"c<,,(O-O,,)I:+ ,I :-32\·'r'r,i,in'(()-O,,)I"(r'-t')(r,;-I'):. (B3)
II " (t)
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I {2V(I-V) • • • • •• •
(2-v)S(I) = - ---I [r'r;;-I')+4(I-v)(I-2v)cos(0-1J0)r[,-r;;-I)

r(l) rro

9 ••••• } I {8 . • 0 IJ .[.. .)-4v(l-v)cos( -lJo)r(r-I')(rjj-I') +-.- v(l-v)rrosm'( - 0)1 ,-ro-I
T(r)

+ 8v(l- v)rro sin' (O-Oo)I'(r' -I')(r~-I') +4," cos (0-90)1'(r' -I' )(r~ -I' )[r'r~ -I'J)

+ _,_1_ I _ 16v'rro sin' (0 - Oo)I'(r' -I')(r~-I')[r'r~-1'1} . (B-l)
T(r) \

where:

(B5)

APPENDIX C

The integrals used to determine the shear stresses may be evaluated as follows. Equation (9) of Fabrikant
(1987b) gives the result

where

. (r'r,i-x')
.... (x) = [ •• • " (1/ 0 I"'r'ro+x - •.~'rrocos - 0)

(Cll

(C2)

and R' = r' + r,i - 2rro cos (0 - ( 0 ), By performing two successive differentiations of eqn (CI) with respect to O.
one may obtain

The following integral is evaluated in Appendix B of Hanson (1990)

f" x'l,(x)dx I -'[ aR ] a 1
(r '_V').I"(r,_,·').I·'=-R.l tan ~~ +R' ~~. (C5)

u u ~,... ..,j'u-u·v" -u" "';'u-u"'v r -- Cl -

Differentiating (C5) with respect to 0 yields

f" , X:;;:!x),dx • .I.' = - -2.. tan - I [ aR ]Jo (ro-x-) '(r-x-)' 2R' jd-a'jr'-a'

a jr~-a'jr'-a: a 1
+:;---. •• •• + .. .' (C6)

.R [r"r;;+a -2a'rro cos (0-00 )] R ;;~-a:/r:-a'

One of the remaining integrals in eqn (10). (84) with a 3i2 singularity is of the following form

(C7)

The additional x' factor in the numerator (compared to eqn (C5Jl renders the integral dilIieult to evaluatc in a
closed form. It may be partially evaluated by substituting

Using cqn (C5) and the integral

f" (r'r~-x'ldx _ u

(r'-t')·I·'(r'-v').I,' - ~ ".-,'
o 0 • ... "";'o-ll"V"';'-u':

the integral in (C7) takes the form

(C8)

(C9)
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i" x".(, (x) dx a. . • .• = +2rrocos-(O-Bo)
o (rQ-x')' l(r--r)" Jr~-alJrl-al

{
I. _ I [ aR ] a I } 1 1 i" ;., (x) dx

x -, tan + --:; -r '0 ~ ~ v', "J ~ .
R· Jr1-a1 /r1_al R' /rl_a1 /r1_a1 0 (ro-r) '(r'-r) .

o ~ ~ 0 ,

This last integral can be reduced to one with square root singularities by using the relation

[rlr~-x·l d [ x ]
(r~_xl)'l(rl_x,)'l = dx Jr~-xlJrl-xl .

and an integration by parts. The final result is

The last integral in eqn (83). (84) wilh a 3/2 singulilrity is of the lype

Using eqn (C II) and an inlegmlion by paris gives

(CIO)

(CII)

(CI2)

(CU)

The remaining integrals in (CI2) and (Cl4) have square root singularities. When lhese terms ilre combined
wilh the other square root singular terms in eqns (83), (84) that do not tit the forms in (CI). (C3). (C4). the
resulting combinations can be put in these forms and evaluilted.


